A Morphology-Driven Method for Measuring Technology Complementarity: Empirical Study Involving Alzheimer's Disease

Xuefeng Wang, Rongrong Li, Yuqin Liu, Ming Lei

Journal of Data and Information Science ›› 2022, Vol. 7 ›› Issue (3) : 20-48.

PDF(8211 KB)
PDF(8211 KB)
Journal of Data and Information Science ›› 2022, Vol. 7 ›› Issue (3) : 20-48. DOI: 10.2478/jdis-2022-0017
Research Paper

A Morphology-Driven Method for Measuring Technology Complementarity: Empirical Study Involving Alzheimer's Disease

    {{javascript:window.custom_author_en_index=0;}}
  • {{article.zuoZhe_EN}}
Author information +
History +

HeighLight

{{article.keyPoints_en}}

Abstract

{{article.zhaiyao_en}}

Key words

QR code of this article

Cite this article

Download Citations
{{article.zuoZheEn_L}}. {{article.title_en}}[J]. {{journal.qiKanMingCheng_EN}}, 2022, 7(3): 20-48 https://doi.org/10.2478/jdis-2022-0017

References

References

{{article.reference}}

Funding

RIGHTS & PERMISSIONS

{{article.copyrightStatement_en}}
{{article.copyrightLicense_en}}
PDF(8211 KB)

Accesses

Citation

Detail

Sections
Recommended

京ICP备05002861号-43

Copyright © 2023 All rights reserved Journal of Data and Information Science

E-mail: jdis@mail.las.ac.cn Add:No.33, Beisihuan Xilu, Haidian District, Beijing 100190, China

Support by Beijing Magtech Co.ltd E-mail: support@magtech.com.cn

/