C havarro, D. & Liu, Y. (2014). How can a word be disambiguated in a set of documents: Using recursive Lesk to select relevant records. Presented in 2014 Annual Global Techmining Conference. Retrieved from
http://www.gtmconference.org/abstracts/2014/session1METHODS3.pdf.
Chin, W.S., Zhuang, Y., Juan, Y.C., Wu, F., Tung, H.Y., Yu, T., Wang, J.P., Chang, C.X., Yang, C.P. & Chang, W.C. (2014). Effective string processing and matching for author disambiguation. The Journal of Machine Learning Research, 15, 3037-3064.
Coussens, L., Yang-Feng, T.L., Liao, Y, Chen, E., Gray, A., McGrath, J., …& Ullrich, A (1985) Tyrosine kinase receptor with extensive homology to EGF receptor shares chromosomal location with neu oncogene. Science, 230(4730), 1132-1139.
Daim, T.U., Rueda, G., Martin, H., & Gerdsri, P. (2006). Forecasting emerging technologies: Use of bibliometrics and patent analysis. Technological Forecasting and Social Change, 73, 981-1012.
Friedman, J., Hastie, T., & Tibshirani, R. (2010). Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software, 33, 1-22.
Fukushige, S., Matsubara, K., Yoshida, M., Sasaki, M., Suzuki, T., Semba, K., Toyoshima, K. & Yamamoto, T. (1986). Localization of a novel v-erbB-related gene, c-erbB-2, on human chromosome 17 and its amplification in a gastric cancer cell line. Molecular and Cellular Biology, 6, 955-958.
Hastie, T., Tibshirani, R., & Friedman, J. (2009). The elements of statistical learning. Berlin: Springer. Available at:
https://link.springer.com/content/pdf/10.1007/978-0-387-84858-7.pdf.
Huang, S., Yang, B., Yan, S. & Rousseau, R. (2014). Institution name disambiguation for research assessment. Scientometrics, 99, 823-838.
International Society of Scientometrics and Informetrics (ISSI) (2015). International Conference on Scientometrics & Informetris Call for Paper. Retrieved from
http://issi2015.ulakbim.gov.tr/.
Jurka, T., Collingwood, L., Boydstun, A., Grossman, E., & Atteveldt, W.V. (2012). RTextTools: A supervised learning package for text classification. The R journal, 5, 6-12.
Kim, B., Gazzola, G., Lee, J.M., Kim, D., Kim, K., & Jeong, M.K. (2014). Inter-cluster connectivity analysis for technology opportunity discovery. Scientometrics, 98, 1811-1825.
Kim, J., & Diesner, J. (2015). Distortive effects of initial-based name disambiguation on measurements of large-scale coauthorship networks. Journal of the Association for Information Science and Technology, 67(6): 1446-1461.
King, B., Jha, R., & Radev, D.R. (2014). Heterogeneous networks and their applications: Scientometrics, name disambiguation, and topic modeling. Transactions of the Association for Computational Linguistics, 2, 1-14.
Liaw, A., & Wiener, M. (2002). Classification and regression by randomForest. R news, 2, 18-22.
Li, C., Sun, A., & Datta, A. (2013). TSDW: Two-stage word sense disambiguation using Wikipedia. Journal of the American Society for Information Science and Technology, 64(6), 1203-1223.
Liu, W., Do?an, R.I., Kim, S., Comeau, D.C., Kim, W., Yeganova, L., & Wilbur, W.J. (2014). Author name disambiguation for PubMed. Journal of the Association for Information Science and Technology, 65(4), 765-781.
Lundberg, J., Fransson, A., Brommels, M., Skar, J., & Lundkvist, I. (2006). Is it better or just the same? Article identification strategies impact bibliometric assessments. Scientometrics, 66, 183-197.
Meyer, D., Dimitriadou, E., Hornik, K., Weingessel, A., & Leisch, F. (2012). Misc Functions of the Department of Statistics, Probability Theory Group (Formerly: E1071), TU Wien. Retrieved from
http://cran-r.c3sl.ufpr.br/web/packages/e1071/e1071.pdf.
Peters, A., Hothorn, T., Ripley, B.D., Therneau, T., Atkinson, B., & Hothorn, M.T. (2012). Package ‘ipred’: Improved predictors. Retrieved from
https://cran.r-project.org/web/packages/ipred/index.html.
Porter, A., & Cunningham, S. (2004). Tech mining: Exploiting new technologies for competitive advantage. Hoboken, New Jersey: John Wiley & Sons.
Ripley, B. (2012). Tree: Classification and regression trees. Retrieved from
https://cran.r-project.org/web/packages/tree/index.html.
Rotolo, D., Hopkins, M., & Grassano, N. Do funding sources complement or substitute? The case of the UK cancer research. In the 19
th International Conference on Science and Technology Indicators (the STI 2014), (pp 473). Leiden, Netherlands.
Salo, A., Mild, P., & Pentikäinen, T. (2006). Exploring causal relationships in an innovation program with robust portfolio modeling. Technological Forecasting and Social Change, 73, 1028-1044.
Schechter, A.L., Stern, D.F., Vaidyanathan, L., Decker, S.J., Drebin, J.A., Greene, M.I., & Weinberg, R.A. (1984). The Neu Oncogene - An Erb-b-related gene encoding A 185,000-Mr Tumor-antigen. Nature, 312(5994): 513-516.
Semba, K., Kamata, N., Toyoshima, K., & Yamamoto, T. (1985). A v-erbB-related protooncogene, c-erbB-2, is distinct from the c-erbB-1/epidermal growth factor-receptor gene and is amplified in a human salivary gland adenocarcinoma. Proceedings of the National Academy of Sciences, 82, 6497-6501.
Shih, C., Padhy, L.C., Murray, M., & Weinberg, R.A. (1981). Transforming genes of carcinomas and neuroblastomas introduced into mouse fibroblasts. Nature, 290, 261-264.
Slamon, D.J., Clark, G.M., Wong, S.G., Levin, W.J., Ulirich, A., & Mcguire, W.L. (1987). Human breast cancer: Correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science, 235, 177-182.
Tuszynski, J. (2012). caTools: Tools: Moving window statistics. Retrieved from
https://cran.rproject.org/web/packages/caTools/index.html.
Wallace, M.L., & Rafols, I. (2014). Research portfolios in science policy: Moving from financial returns to societal benefits. Minerva, 2015, 53(2): 89-115.