1 Introduction
2 Materials and methods
2.1 Data and variables
2.2 Statistical procedures
Table 1 Values of indicators studied (2012). |
Country/region | GDP per capita | HDI 2012 | GDP Mill ($) | Population 2012 | N.U. (500) | 500% | Median_ NU | Global share of GDP | N.U. (100) |
---|---|---|---|---|---|---|---|---|---|
United States (USA) | 51,748.6 | 0.94 | 16,244,600 | 313,914,040 | 150 | 30.00 | 153.20 | 22.64 | 53 |
United Kingdom (GBR) | 39,093.5 | 0.88 | 2,471,784 | 63,227,526 | 38 | 7.60 | 39.00 | 3.44 | 9 |
Germany (DEU) | 41,862.7 | 0.92 | 3,428,131 | 81,889,839 | 37 | 7.40 | 39.00 | 4.78 | 4 |
Chinese mainland* (CHN) | 6,091.0 | 0.70 | 8,227,103 | 1,350,695,000 | 28 | 5.60 | 21.80 | 11.47 | 0 |
Canada (CAN) | 52,219.0 | 0.91 | 1,821,424 | 34,880,491 | 22 | 4.40 | 22.00 | 2.54 | 4 |
Japan (JPN) | 46,720.4 | 0.91 | 5,959,718 | 127,561,489 | 21 | 4.20 | 26.20 | 8.31 | 4 |
France (FRA) | 39,771.8 | 0.89 | 2,612,878 | 65,696,689 | 20 | 4.00 | 21.80 | 3.64 | 3 |
Italy (ITA) | 33,071.8 | 0.88 | 2,014,670 | 60,917,978 | 20 | 4.00 | 21.40 | 2.81 | 0 |
Australia (AUS) | 67,555.8 | 0.94 | 1,532,408 | 22,683,600 | 19 | 3.80 | 17.40 | 2.14 | 5 |
Netherlands (NLD) | 45,954.7 | 0.92 | 770,555 | 16,767,705 | 13 | 2.60 | 12.40 | 1.07 | 2 |
Spain (ESP) | 28,624.5 | 0.89 | 1,322,965 | 46,217,961 | 11 | 2.20 | 10.40 | 1.84 | 0 |
Sweden (SWE) | 55,041.2 | 0.92 | 523,806 | 9,516,617 | 11 | 2.20 | 11.00 | 0.73 | 3 |
Korea (KOR) | 22,590.2 | 0.91 | 1,129,598 | 50,004,441 | 10 | 2.00 | 9.60 | 1.57 | 0 |
Chinese Taiwan (TWN) | 20,335.9 | 0.91 | 4,741,490 | 23,315,822 | 9 | 1.80 | 7.40 | 1.00 | 0 |
Austria (AUT) | 46,642.3 | 0.90 | 394,708 | 8,462,446 | 7 | 1.40 | 7.00 | 0.55 | 0 |
Belgium (BEL) | 43,372.4 | 0.90 | 483,262 | 11,142,157 | 7 | 1.40 | 7.00 | 0.67 | 1 |
Switzerland (CHE) | 78,924.7 | 0.91 | 631,173 | 7,997,152 | 7 | 1.40 | 7.40 | 0.88 | 4 |
Brazil (BRA) | 11,339.5 | 0.73 | 2,252,664 | 198,656,019 | 6 | 1.20 | 6.20 | 3.14 | 0 |
Israel (ISR) | 30,413.3 | 0.90 | 240,505 | 7,907,900 | 6 | 1.20 | 6.60 | 0.36 | 3 |
Finland (FIN) | 45,720.8 | 0.89 | 247,546 | 5,414,293 | 5 | 1.00 | 5.40 | 0.34 | 1 |
Chinese Hong Kong (HKG) | 36,795.8 | 0.91 | 263,259 | 7,154,600 | 5 | 1.00 | 5.00 | 0.37 | 0 |
New Zealand (NZL) | 37,749.4 | 0.92 | 167,347 | 4,433,100 | 5 | 1.00 | 5.00 | 0.23 | 0 |
Denmark (DNK) | 56,325.7 | 0.90 | 314,887 | 5,590,478 | 4 | 0.80 | 4.00 | 0.44 | 2 |
Norway (NOR) | 99,557.7 | 0.96 | 499,667 | 5,018,869 | 4 | 0.80 | 4.00 | 0.70 | 1 |
Ireland (IRL) | 45,931.7 | 0.92 | 210,771 | 4,588,798 | 3 | 0.60 | 3.00 | 0.29 | 0 |
Portugal (PRT) | 20,165.3 | 0.82 | 212,274 | 10,526,703 | 3 | 0.60 | 2.20 | 0.30 | 0 |
South Africa (ZAF) | 7,507.7 | 0.63 | 384,313 | 51,189,306 | 3 | 0.60 | 3.00 | 0.54 | 0 |
Chile (CHL) | 15,452.2 | 0.82 | 269,869 | 17,464,814 | 2 | 0.40 | 2.00 | 0.38 | 0 |
Greece (GRC) | 22,082.9 | 0.86 | 249,099 | 11,280,167 | 2 | 0.40 | 2.00 | 0.35 | 0 |
Hungary (HUN) | 12,530.5 | 0.83 | 124,600 | 9,943,755 | 2 | 0.40 | 2.00 | 0.17 | 0 |
Poland (POL) | 12,707.9 | 0.82 | 489,795 | 38,542,737 | 2 | 0.40 | 2.00 | 0.68 | 0 |
Russia (RUS) | 14,037.0 | 0.79 | 2,014,775 | 143,533,000 | 2 | 0.40 | 2.00 | 2.81 | 1 |
Singapore (SGP) | 51,709.5 | 0.90 | 274,701 | 5,312,400 | 2 | 0.40 | 2.00 | 0.38 | 0 |
Argentina (ARG) | 11,573.1 | 0.81 | 475,502 | 41,086,927 | 1 | 0.20 | 1.00 | 0.66 | 0 |
Czech Republic (CZE) | 18,682.8 | 0.87 | 196,446 | 10,514,810 | 1 | 0.20 | 1.00 | 0.27 | 0 |
India (IND) | 1,489.2 | 0.55 | 1,841,710 | 1,236,686,732 | 1 | 0.20 | 1.60 | 2.57 | 0 |
Mexico (MEX) | 9,748.9 | 0.78 | 1,178,126 | 120,847,477 | 1 | 0.20 | 1.00 | 1.64 | 0 |
Slovenia (SVN) | 22,000.1 | 0.89 | 45,279 | 2,058,152 | 1 | 0.20 | 1.00 | 0.06 | 0 |
Turkey (TUR) | 10,666.1 | 0.72 | 789,257 | 73,997,128 | 1 | 0.20 | 1.00 | 1.10 | 0 |
2.3 Outliers detection
2.4 Principal Component Regression
2.5 The log transformation
2.6 Robust Regression
3 Results
Table 2 Correlations and partial correlations |
CORRELATIONS AND P-VALUES | ||||
---|---|---|---|---|
HDI | GDP PC | GDP | POP | |
NU | 0,434 | 0,488 | 0,685 | 0,290 |
(0,006) | (0,002) | (0,000) | (0,074) | |
IDH | 0,918 | -0,122 | -0,599 | |
(0,000) | (0,459) | (0,000) | ||
GDP PC | -0,051 | -0,586 | ||
(0,760) | (0,000) | |||
GDP | 0,839 | |||
(0,000) | ||||
PARTIAL CORRELATIONS AND P-VALUES Control Variable (IDH) | ||||
GDP_PC | GDP | POP | ||
NU | 0,251 | 0,825 | 0,762 | |
(0,128) | (0,000) | (0,000) | ||
Control Variable (GDP_PC) | ||||
IDH | GDP | POP | ||
NU | -0,041 | 0,814 | 0,814 | |
(0,805) | (0,000) | (0,000) | ||
Control Variable (GDP) | ||||
IDH | GDP_PC | POP | ||
NU | 0,716 | 0,718 | -0,719 | |
(0,000) | (0,000) | (0,000) | ||
Control Variable(POP) | ||||
IDH | GDP_PC | GDP | ||
NU | 0,793 | 0,848 | 0,848 | |
(0,000) | (0,000) | (0,000) |
3.1 Top 500 universities
Figure 1. Outliers detected using Cook’s distance. |
Table 3 Values for each indicator by component (before excluding outliers). |
Principal Component Analysis | ||||
---|---|---|---|---|
Indicator | Population | GDP | GDP PC | HDI |
First component | -0.499 | 0.041 | 0.979 | 0.964 |
Second component | 0.864 | 0.998 | -0.099 | -0.153 |
% of explained variance | 0.996 | 0.998 | 0.967 | 0.952 |
Table 4 Values for each indicator by component (after excluding outliers). |
Principal Component Analysis | ||||
---|---|---|---|---|
Indicator | Population | GDP | GDP PC | HDI |
First component | -0.377 | 0.119 | 0.970 | 0.946 |
Second component | -0.922 | -0.992 | 0.011 | 0.153 |
% of explained variance | 0.993 | 0.999 | 0.942 | 0.918 |
Excluding data for USA, ZAF, NOR, IND, and CHN. |
Figure 2. Actual vs MLR model-estimated number of universities on the ARWU (excluded influence observations). |
Figure 3. Actual vs robust regression model-estimated number of universities on the ARWU (excluding observations with high influence) |
Figure 4. Model-estimated(M-E) number of universities (n.u) on ARWU before vs after raising HDI by 10%. |
Figure 5. Model-estimated (M-E) number of universities(n.u) on ARWU before vs after raising GDP per capita by 10%. |
Figure 6. Model-estimated (M-E) number of universities (n.u) on ARWU before vs after raising GDP per capita and HDI by 10%. |
Figure 7. Point graph showing the differences between the number of universities on the ARWU when score 1 is modified. |
3.2 Top 100 universities
Table 5 Effect of GDP per capita and HDI on countries/regions’ presence in the ARWU top 100 (dummy variables). |
At least 1 university | No universities | Total | p-value | |
---|---|---|---|---|
GDP PC > median(GDP PC) | 14 | 5 | 19 | 0,000* |
GDP PC ≤ median(GDP PC) | 2 | 18 | 20 | |
Very high HDI | 15 | 17 | 32 | 0,093 |
Other | 1 | 6 | 7 |
Table 6 Relationship between number of universities per million inhabitants and country/region presence in the ARWU top 100 (dummy variables). |
Presence in the ARWU top 100 | ||||
---|---|---|---|---|
No. univ. per 1 M inhabit. | At least 1 univ. | No univ. | Total | p-value |
more than 2 | 16 | 12 | 28 | 0.000* |
2 or fewer | 0 | 11 | 11 | |
Total | 16 | 23 | 39 |
The data on the number of universities were taken from the education authorities’ websites for some countries/regions, http://univ.cc, and http://www.iau-aiu.net/content/list-heis. |