1 Introduction
2 Core ideas of network science and how they fit into a scientometric framework
3 The three-layer fundamental network of scientometrics
Figure 1. A three-layer network of scientometric relational data: Authors, papers and concepts on the one hand; and inventors, patents, and technology concepts on the other. |
4 The closed-system and open-system approach
helps us to go beyond the presumed closed system. Let us continue with the above example of the citation network. Now we want to measure the reliability or trustworthiness of papers. Taking the closed-system approach implies that the citation network has captured all the relevant entities and relations regarding the reliability of papers. However, this assumption very likely does not hold. There might be some correlation between citation counts and reliability, but these notions are not the same, and the citation network only represents citations among papers but not reliability. Therefore, the citation network is not enough for the task of finding or determining a reliability measure. One way out of this would be to define a new network that captures the essence of reliability, about which we do not really know much. An open-system approach will be making use of the citation network together with some exogenous information. Let us assume that we have a small set of papers whose reliability scores have been evaluated by human experts. Then if we assume that papers citing more reliable papers are themselves more reliable or papers cited by more reliable papers are themselves more reliable, we can propagate the exogenous reliability scores of a selected set of papers to all papers via the citation network. This is exactly the idea of the TrustRank algorithm (Gyöngyi et al., 2004) in computer science, which has been used to rank most and least trustworthy web pages to either recommend the highly trustworthy papers or filter out the least trustworthy ones in search engines.