It is clear that paradigmatic differences exist between KO and KR in terms of the goals, methods, and functions. In general, KO works at the conceptual level and uses language to describe concepts with phrases or terms, while KR focuses on formalizing the expressions in natural language as well as other types of data to enable reasoning as in human intelligence. This seemingly wide gap between the KO and KR paradigms is being bridged by ontologies that have become popular since Berners-Lee et al. (2001) proposed the concept of semantic web. Ontologies by nature are “a formal, explicit specification of a shared conceptualization” (
Gruber, 1993). Typically, an ontology defines concepts and specifies relations between them in a formal scheme that can be used for reasoning by computers. According to ISO 25964 Part 2, ontologies defined as such exclude thesauri, classification schemes, and structured vocabularies, even though these are sometimes called “lightweight ontologies” (
ISO, 2013). As a specification of conceptualization, ontologies define classes of concepts or entities and relations between classes in a declarative formalism, which is then used to represent a set of objects (or instances). An example is the Gene Ontology (GO) that specifies about ten term elements and four main relations for gene terms from over 600,000 experimentally supported annotations. This central dataset offers “additional inference of over 6 million functional annotations for a diverse set of organisms spanning the tree of life” (
Gene Ontology Consortium, 2019). Another example is Schema.org that contains a set of individual ontologies representing creative works, nontext objects, events, health and medical types, organizations, people, and other entities. From both ontologies, one can easily detect the inheritance of paradigms prevailed in the KO and KR communities.
Table 1 provides a simplified summary of KO and KR paradigms based on goals, methods, and functions.