1 Introduction
Table 1. Parameters and scoring functions in SOTA baselines and in ContE model. |
Model | Scoring function ψ(e1,r,e2) | Parameters |
---|---|---|
TransE | $|| v_{e_1} + v_r - v_{e_2}||_p$ | $v_{e_1}, v_r, v_{e_2} \in R^d$ |
ComplEx | $Re (<v_{e_1}, v_r, \bar{v}_{e_2}>)$ | $v_{e_1}, v_r, v_{e_2} \in C^d$ |
SimplE | $\frac{1}{2}(<h_{e_1}, v_r, t_{e_2}> + <h_{e_2}, v_{r-1}, t_{e_1}>)$ | $h_{e_1}, v_r, t_{e_2}, h_{e_2}, v_{r-1}, t_{e_1} \in R^d$ |
ConvE | $g(vec(g(concat(\hat{v}_{e_1}, v_r)* \omega))W). v_{e_2}$ | $v_{e_1}, v_r, v_{e_2} \in R^d$ |
ConvKB | $concat(g([v_{e_1}, v_r, v_{e_2}]* \omega)). w$ | $v_{e_1}, v_r, v_{e_2} \in C^d$ |
Rotate | $|| v_{e_1} 。 v_r - v_{e_2}||$ | $v_{e_1}, v_{e_2}, v_r \in C^d$ |
HAKE | $-|| v_{e1_m} 。 v_{r_m} - v_{e2_m}||_2$ | $v_{e1_m}, v_{e2_m} \in R^d, v_{r_m} \in R^d_+$ |
$- \lambda|| sin(v_{e1_p} + v_{r_p} - v_{e2_p})||_1$ | $v_{e1_p}, r_p, v_{e2_p} \in [0,2 \pi )^d$ | |
ContE | $<f_r + v_{e_1}, b_r+ v_{e_2}>$ | $v_{e_1}, v_{e_2}, f_r, b_r \in R^d$ |
2 Related work
3 ContE model
3.1 Optimizing model
3.2 Full expressiveness
3.3 Ability to model relational patterns
Table 2. Relation pattern modeling and inference abilities of baseline models. |
Model | Symmetry | Antisymmetry | Inversion | Composition |
---|---|---|---|---|
TransE (Antoine et al., 2013) | × | √ | √ | √ |
DistMult (Yang et al., 2015) | √ | × | × | × |
ComplEx (Trouillon et al., 2016) | √ | √ | √ | × |
SimplE (Seyed & David, 2018) | √ | √ | √ | × |
ConvE (Dettmers et al., 2018) | - | - | - | - |
ConvKB (Nguyen et al., 2018) | - | - | - | - |
RotatE (Sun et al., 2019) | √ | √ | √ | √ |
HAKE (Zhang et al., 2020) | √ | √ | √ | √ |
KGCR (Pu et al., 2020) | √ | √ | √ | × |
LineaRE (Peng & Zhang, 2020) | √ | √ | √ | √ |
ContE | √ | √ | √ | √ |
Table 3. Comparison of SOTA baselines and ContE model in terms of time complexity and number of parameters. |
Models | #Parameters | Time Complexity |
---|---|---|
TransE | O(ned + nrd) | O(d) |
NTN | O(ned + nrd2k) | O(d3) |
ComplEx | O(ned + nrd) | O(d) |
TransR | O(ned + nrdk) | O(dk) |
SimplE | O(ned + nrd) | O(d) |
ContE | O(ned + 2nrd) | O(d) |
4 Experiments
Table 4. Summary on datasets. |
Dataset | |E| | |R| | |training| | |validation| | |test| |
---|---|---|---|---|---|
FB15K-237 | 14,541 | 237 | 272,115 | 17,535 | 20,466 |
UMLS | 135 | 46 | 5,216 | 652 | 661 |
Nations | 14 | 55 | 1,592 | 199 | 201 |
Countries_S1 | 271 | 2 | 1,111 | 24 | 24 |
Countries_S2 | 271 | 2 | 1,063 | 24 | 24 |
Countries_S3 | 271 | 2 | 985 | 24 | 24 |
Table 5. Experimental results for UMLS. |
UMLS | ||||
---|---|---|---|---|
MRR | Hits@N | |||
1 | 3 | 10 | ||
TransE (Antoine et al., 2013) | 0.7966 | 0.6452 | 0.9418 | 0.9841 |
DistMult (Yang et al., 2015) | 0.868 | 0.821 | - | 0.967 |
ComplEx (Trouillon et al., 2016) | 0.8753 | 0.7942 | 0.9531 | 0.9713 |
ConvE (Dettmers et al., 2018) | 0.957 | 0.932 | - | 0.994 |
NeuralLP (Yang, Zhang, & Cohen, 2017) | 0.778 | 0.643 | - | 0.962 |
NTP-λ (Rocktaschel et al., 2017) | 0.912 | 0.843 | - | 1.0 |
MINERVA (Das et al., 2018) | 0.825 | 0.728 | - | 0.968 |
KGRRS+ComplEx (Lin et al., 2018) | 0.929 | 0.887 | - | 0.985 |
KGRRS+ConvE (Lin et al., 2018) | 0.940 | 0.902 | - | 0.992 |
Rotate (Sun et al., 2019) | 0.9274 | 0.8744 | 0.9788 | 0.9947 |
HAKE (Zhang et al., 2020) | 0.8928 | 0.8366 | 0.9387 | 0.9849 |
LineaRE (Peng & Zhang, 2020) | 0.9508 | 0.9145 | 0.9856 | 0.9992 |
ContE | 0.9677 | 0.9501 | 0.9811 | 1.0 |
Table 6. Experimental results for Nations. |
Nations | ||||
---|---|---|---|---|
MRR | Hits@N | |||
1 | 3 | 10 | ||
TransE (Antoine et al., 2013) | 0.4813 | 0.2189 | 0.6667 | 0.9801 |
DistMult (Yang et al., 2015) | 0.7131 | 0.5970 | 0.7761 | 0.9776 |
ComplEx (Trouillon et al., 2016) | 0.6677 | 0.5274 | 0.7413 | 0.9776 |
ConvE (Dettmers et al., 2018) | 0.5616 | 0.3470 | 0.7155 | 0.9946 |
Rotate (Sun et al., 2019) | 0.7155 | 0.5796 | 0.7985 | 1.0 |
HAKE (Zhang et al., 2020) | 0.7157 | 0.5945 | 0.7786 | 0.9851 |
LineaRE (Peng & Zhang, 2020) | 0.8146 | 0.7114 | 0.8881 | 0.9975 |
ContE | 0.8412 | 0.7587 | 0.9179 | 1.0 |
Table 7. Experimental results for FB15K-237. |
FB15K-237 | ||||
---|---|---|---|---|
MRR | Hits@N | |||
1 | 3 | 10 | ||
TransE (Antoine et al., 2013) | 0.279 | 0.198 | 0.376 | 0.441 |
DistMult (Yang et al., 2015) | 0.281 | 0.199 | 0.301 | 0.446 |
ComplEx (Trouillon et al., 2016) | 0.278 | 0.194 | 0.297 | 0.45 |
ConvE (Dettmers et al., 2018) | 0.312 | 0.225 | 0.341 | 0.497 |
ConvKB (Nguyen et al., 2018) | 0.289 | 0.198 | 0.324 | 0.471 |
R-GCN (Schlichtkrull et al., 2018) | 0.164 | 0.10 | 0.181 | 0.30 |
SimplE (Seyed & David, 2018) | 0.169 | 0.095 | 0.179 | 0.327 |
CapsE (Nguyen et al., 2019) | 0.150 | - | - | 0.356 |
Rotate (Sun et al., 2019) | 0.338 | 0.241 | 0.375 | 0.533 |
ContE | 0.3445 | 0.2454 | 0.3823 | 0.5383 |
Table 8. Experimental results for Countries_S1. |
Countries_S1 | ||||
---|---|---|---|---|
MRR | Hits@N | |||
1 | 3 | 10 | ||
TransE (Antoine et al., 2013) | 0.8785 | 0.7708 | 1.0 | 1.0 |
DistMult (Yang et al., 2015) | 0.9028 | 0.8125 | 1.0 | 1.0 |
ComplEx (Trouillon et al., 2016) | 0.9792 | 0.9583 | 1.0 | 1.0 |
Rotate (Sun et al., 2019) | 0.8750 | 0.7708 | 1.0 | 1.0 |
HAKE (Zhang et al., 2020) | 0.9045 | 0.8333 | 0.9792 | 1.0 |
LineaRE (Peng & Zhang, 2020) | 1.0 | 1.0 | 1.0 | 1.0 |
ContE | 1.0 | 1.0 | 1.0 | 1.0 |
Table 9. Experimental results for Countries_S2 and Countries_S3. |
Countries_S2 | Countries_S3 | |||||||
---|---|---|---|---|---|---|---|---|
MRR | Hits@N | MRR | Hits@N | |||||
1 | 3 | 10 | 1 | 3 | 10 | |||
TransE | 0.6997 | 0.50 | 0.9375 | 1.0 | 0.1206 | 0.00 | 0.0833 | 0.3542 |
DistMult | 0.7813 | 0.5833 | 1.0 | 1.0 | 0.2496 | 0.0625 | 0.333 | 0.6250 |
ComplEx | 0.7934 | 0.6042 | 0.9792 | 1.0 | 0.2731 | 0.0833 | 0.3958 | 0.6667 |
Rotate | 0.6979 | 0.4792 | 0.9583 | 1.0 | 0.1299 | 0.00 | 0.0833 | 0.4792 |
HAKE | 0.6667 | 0.4583 | 0.8333 | 0.9583 | 0.2472 | 0.0625 | 0.3333 | 0.5417 |
LineaRE | 0.7873 | 0.6458 | 0.9583 | 0.9792 | 0.2393 | 0.0625 | 0.3542 | 0.5208 |
ContE | 0.8370 | 0.7292 | 0.9583 | 0.9792 | 0.4695 | 0.3542 | 0.5 | 0.625 |
Table 10. Testing the ability of inferring relation patterns on UMLS. |
UMLS | ||||
---|---|---|---|---|
Symmetry | Antisymmetry | Inversion | Composition | |
ComplEx | - | 0.8806 | 0.8615 | 0.8732 |
Rotate | - | 0.9065 | 0.9069 | 0.9141 |
HAKE | - | 0.8558 | 0.8650 | 0.8723 |
LineaRE | - | 0.9446 | 0.9441 | 0.9490 |
ContE | - | 0.9644 | 0.9622 | 0.9645 |
Table 11. Testing the ability of inferring relation patterns on Nations. |
Nations | ||||
---|---|---|---|---|
Symmetry | Antisymmetry | Inversion | Composition | |
ComplEx | - | 0.6499 | 0.6487 | 0.6499 |
Rotate | - | 0.6825 | 0.6970 | 0.6907 |
HAKE | - | 0.6953 | 0.6835 | 0.6844 |
LineaRE | - | 0.8189 | 0.8240 | 0.8333 |
ContE | - | 0.8256 | 0.8326 | 0.8303 |