[1] ABCNews. (2015, November 12). Google’s driving cars learn caution around kids. ABC News. https://abcnews.go.com/Technology/googles-driving-cars-learn-caution-kids/story?id=34911071.
[2] Adams J. N., van Zelst S. J., Rose T., & van der Aalst, W. M. (2023). Explainable concept drift in process mining.Information Systems, 114, 102177.
[3] Baena-Garcıa M., del Campo-Ávila J., Fidalgo R., Bifet A., Gavalda R., & Morales-Bueno R. (2006). Early drift detection method. In Fourth international workshop on knowledge discovery from data streams, volume 6(pp.77-86). Citeseer.
[4] Barzamini H., Rahimi M., Shahzad M., & Alhoori H. (2022). Improving generalizability of ML-enabled software through domain specification. InProceedings of the 1st International Conference on AI Engineering: Software Engineering for AI(pp.181-192).
[5] Bechini A., Bondielli A., Ducange P., Marcelloni F., & Renda A. (2021). Addressing event-driven concept drift in twitter stream: A stance detection application.IEEE Access, 9, 77758-77770.
[6] Benenson R., Omran M., Hosang J., & Schiele B. (2015). Ten years of pedestrian detection, what have we learned? In Computer Vision-ECCV 2014 Workshops: Zurich, Switzerland, September 6-7 and 12, 2014, Proceedings, Part II 13 (pp. 613-627). Springer.
[7] Blei D. M., Ng A. Y., & Jordan M. I. (2003). Latent dirichlet allocation.Journal of Machine Learning Research, 3(Jan), 993-1022.
[8] Brunetti A., Buongiorno D., Trotta G. F., & Bevilacqua V. (2018). Computer vision and deep learning techniques for pedestrian detection and tracking: A survey.Neurocomputing, 300, 17-33.
[9] Cabral, D. R., & Barros, R. S. M. (2018). Concept drift detection based on fisher’s exact test.Information Sciences, 442, 220-234.
[10] Cao J., Pang Y., Xie J., Khan F. S., & Shao L. (2021). From handcrafted to deep features for pedestrian detection: A survey.IEEE transactions on pattern analysis and machine intelligence, 44(9), 4913-4934.
[11] Costa J., Silva C., Antunes M., & Ribeiro B. (2014). Concept drift awareness in twitter streams. In 13th International Conference on Machine Learning and Applications (pp. 294-299). IEEE.
[12] Deshpande, L. A., & Narasingarao, M. (2019). Addressing social popularity in twitter data using drift detection technique.Journal of Engineering Science and Technology, 14(2), 922-934.
[13] Dollar P., Wojek C., Schiele B., & Perona P. (2011). Pedestrian detection: An evaluation of the state of the art.IEEE transactions on pattern analysis and machine intelligence, 34(4), 743-761.
[14] Dries, A., & Rückert, U. (2009). Adaptive concept drift detection.Statistical analysis and data mining: The ASA Data Science Journal, 2(5-6), 311-327.
[15] Gama J., Žliobaitė I., Bifet A., Pechenizkiy M., & Bouchachia A. (2014). A survey on concept drift adaptation.ACM computing surveys (CSUR), 46(4), 1-37.
[16] Google Books. (2024). Google books ngram viewer. Retrieved October 9, 2024, from https://books.google.com/ngrams
[17] Halstead B., Koh Y. S., Riddle P., Pechenizkiy M., & Bifet A. (2023). Combining diverse meta-features to accurately identify recurring concept drift in data streams.ACM Transactions on Knowledge Discovery from Data, 17(8), 1-36.
[18] Harel M., Mannor S., El-Yaniv R., & Crammer K. (2014). Concept drift detection through resampling. In International conference on machine learning(pp. 1009-1017). PMLR.
[19] Hasan I., Liao S., Li J., Akram S. U., & Shao L. (2021). Generalizable pedestrian detection: The elephant in the room. InProceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition(pp. 11328-11337).
[20] Hinder F., Vaquet V., & Hammer B. (2024). One or two things we know about concept drift—a survey on monitoring in evolving environments. Part A: Detecting concept drift.Frontiers in Artificial Intelligence, 7, 1330257.
[21] Kanungo T., Mount D. M., Netanyahu N. S., Piatko C. D., Silverman R., & Wu A. Y. (2002). An efficient k-means clustering algorithm: Analysis and implementation.IEEE transactions on pattern analysis and machine intelligence, 24(7), 881-892.
[22] Kelly M. G., Hand D. J., & Adams N. M. (1999). The impact of changing populations on classifier performance. In Proceedings of the fifth ACM SIGKDD international conference on Knowledge discovery and data mining(pp. 367-371). Association for Computing Machinery.
[23] Li C.-T., Shan M.-K., Jheng S.-H., & Chou K.-C. (2016). Exploiting concept drift to predict popularity of social multimedia in microblogs.Information Sciences, 339, 310-331.
[24] Lifna, C., & Vijayalakshmi, M. (2015). Identifying concept-drift in twitter streams.Procedia Computer Science, 45, 86-94.
[25] Lin T.-Y., Dollár P., Girshick R., He K., Hariharan B., & Belongie S. (2017). Feature pyramid networks for object detection. InProceedings of the IEEE conference on computer vision and pattern recognition (pp. 2117-2125).
[26] New York Times. (2018, March 20). Self-driving Uber car kills pedestrian in Arizona, where robots roam. The New York Times. https://www.nytimes.com/interactive/2018/03/20/us/self-driving-uber-pedestrian-killed.html
[27] Nishida, K., & Yamauchi, K. (2007). Detecting concept drift using statistical testing. In International conference on discovery science,(pp.264-269). Springer.
[28] Park, H. J. & Goel, A. (2021). Dynamic adjustment of concurrent neural networks within limited power thermal constraints in autonomous driving. In 2021 20th IEEE International Conference on Machine Learning and Applications (ICMLA)(pp. 879-884). IEEE.
[29] Perez, L., & Wang, J. (2017). The effectiveness of data augmentation in image classification using deep learning. arXiv. https://doi.org/10.48550/arXiv.1712.04621
[30] Rahutomo F., Kitasuka T., & Aritsugi M. (2012). Semantic cosine similarity. In The 7th international student conference on advanced science and technology ICAST (vol.4, pp.1). University of Seoul South Korea.
[31] Ren S., He K., Girshick R., & Sun J. (2016). Faster R-CNN: Towards real-time object detection with region proposal networks.IEEE transactions on pattern analysis and machine intelligence, 39(6),1137-1149.
[32] Salay, R. & Czarnecki, K. (2019). Improving ml safety with partial specifications. In Computer Safety, Reliability, and Security: SAFECOMP 2019 Workshops, ASSURE, DECSoS, SASSUR, STRIVE, and WAISE, Turku, Finland, September 10, 2019, Proceedings 38(pp. 288-300). Springer.
[33] Shahzad, M. & Alhoori, H. (2022). Public reaction to scientific research via twitter sentiment prediction.Journal of Data and Information Science, 7(1), 97-124.
[34] Soares E., Angelov P., Filev D., Costa B., Castro M., & Nageshrao S. (2019). Explainable density-based approach for self-driving actions classification. In 2019 18th IEEE International Conference On Machine Learning And Applications (ICMLA)(pp. 469-474). IEEE.
[35] Srinivasan K., Raman K., Chen J., Bendersky M., & Najork M. (2021). WIT: Wikipedia-based image text dataset for multimodal multilingual machine learning. In Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval(pp. 2443-2449). Association for Computing Machinery. https://doi.org/10.1145/3404835.3463257
[36] Tsymbal, A. (2004). The problem of concept drift: definitions and related work.Computer Science Department, Trinity College Dublin, 106(2), 58.
[37] Wagstaff K., Cardie C., Rogers S., & Schrödl S. (2001). Constrained k-means clustering with background knowledge. In Proceedings of the 18th International Conference on Machine Learning (ICML ‘01)(pp. 577-584). Morgan Kaufmann Publishers Inc.
[38] Wang, H., & Abraham, Z. (2015). Concept drift detection for streaming data. In 2015 international joint conference on neural networks (IJCNN)(pp. 1-9). IEEE.
[39] Wang P., Yang A., Men R., Lin J., Bai S., Li Z., Ma J., Zhou C., Zhou J., & Yang H. (2022). OFA: Unifying architectures, tasks, and modalities through a simple sequence-to-sequence learning framework. In International conference on machine learning(pp. 23318-23340). PMLR.
[40] Webb G. I., Hyde R., Cao H., Nguyen H. L., & Petitjean F. (2016). Characterizing concept drift.Data Mining and Knowledge Discovery, 30(4), 964-994.
[41] Xiang Q., Zi L., Cong X., & Wang Y. (2023). Concept drift adaptation methods under the deep learning framework: A literature review.Applied Sciences, 13(11), 6515.
[42] Xie S., Girshick R., Dollár P., Tu Z., & He K. (2017). Aggregated residual transformations for deep neural networks. InProceedings of the IEEE conference on computer vision and pattern recognition (pp.1492-1500).
[43] Xu L., Ding X., Peng H., Zhao D., & Li X. (2023). Adtcd: An adaptive anomaly detection approach toward concept drift in IoT.IEEE Internet of Things Journal, 10(18), 15931-15942.
[44] Zhang Y., Kang B., Hooi B., Yan S.,& Feng, J.(2021). Deep long-tailed learning: A survey. arXiv. https://doi.org/10.48550/arXiv.2110.04596