Ackers, L. (2005). Moving people and knowledge: Scientific mobility in the European Union.International migration, 43(5), 99-131.
Amelina, A. (2013). Hierarchies and categorical power in cross-border science: Analysing scientists’ transnational mobility between Ukraine and Germany.Southeast European and Black Sea Studies, 13(2), 141-155.
Appelt S., van Beuzekom B., Galindo-Rueda F., & de Pinho R. (2015). Which factors influence the international mobility of research scientists? In Global mobility of research scientists (pp. 177-213). Elsevier.
Austin, P. C. (2008). A critical appraisal of propensity‐score matching in the medical literature between 1996 and 2003.Statistics in medicine, 27(12), 2037-2049.
Austin, P. C. (2009). Some methods of propensity‐score matching had superior performance to others: results of an empirical investigation and Monte Carlo simulations.Biometrical Journal, 51(1), 171-184.
Azoulay P., Ganguli I.,& Zivin, J. G.(2017). The mobility of elite life scientists: Professional and personal determinants. Research policy, 46(3), 573-590. https://doi.org/10.1016/j.respol.2017.01.00.
Beine M., Docquier F., & Rapoport H. (2001). Brain drain and economic growth: theory and evidence.Journal of Development Economics, 64(1), 275-289.
Bornmann, L. (2014). Do altmetrics point to the broader impact of research? An overview of benefits and disadvantages of altmetrics.Journal of Informetrics, 8(4), 895-903.
Cao C., Baas J., Wagner C. S., & Jonkers K. (2020). Returning scientists and the emergence of China’s science system.Science and Public Policy, 47(2), 172-183.
Cao C.,& Simon, D. F. (2021). China’s talent challenges revisited. In E. Baark, B. Hofman, & J. Qian (Eds.), Innovation and China’s global emergence (pp. 90-112). NUS Press.
Carlson, T., & Martin-Rovet, D. (1995). The implications of scientific mobility between France and the United States.Minerva, 211-250.
Chand, M., & Tung, R. L. (2019). Skilled immigration to fill talent gaps: A comparison of the immigration policies of the United States, Canada, and Australia.Journal of International Business Policy, 2, 333-355.
Chepurenko, A. (2015). The role of foreign scientific foundations’ role in the cross-border mobility of Russian academics.International Journal of Manpower, 36(4), 562-584.
Clauset A., Arbesman S., & Larremore D. B. (2015). Systematic inequality and hierarchy in faculty hiring networks.Science Advances, 1(1), e1400005.
Conchi, S., & Michels, C. (2014). Scientific mobility: An analysis of Germany, Austria, France and Great Britain (Fraunhofer ISI Discussion Papers Innovation Systems and Policy Analysis, No. 41). Fraunhofer-Institut für System- und Innovationsforschung ISI. https://hdl.handle.net/10419/9437.
Cooke F. L., Saini D. S., & Wang J. (2014). Talent management in China and India: A comparison of management perceptions and human resource practices.Journal of world business, 49(2), 225-235.
Costas R., Van Leeuwen T. N., & Bordons M. (2010). A bibliometric classificatory approach for the study and assessment of research performance at the individual level: The effects of age on productivity and impact.Journal of the American society for information science and technology, 61(8), 1564-1581.
Czaika, M., & Orazbayev, S. (2018). The globalisation of scientific mobility, 1970-2014.Applied Geography, 96, 1-10.
Deng X., Liang L., Wu F., Wang Z., & He S. (2022). A review of the balance of regional development in China from the perspective of development geography.Journal of Geographical Sciences, 32(1), 3-22.
Deville P., Wang D., Sinatra R., Song C., Blondel V. D., & Barabási A.-L. (2014). Career on the move: Geography, stratification and scientific impact.Scientific reports, 4(1), 1-7.
Edler J., Fier H., & Grimpe C. (2011). International scientist mobility and the locus of knowledge and technology transfer.Research policy, 40(6), 791-805.
Florida R., Mellander C. P., & Stolarick K. M. (2010). Talent, technology and tolerance in Canadian regional development.The Canadian Geographer/Le Géographe canadien, 54(3), 277-304.
Fortunato S., Bergstrom C. T., Börner K., Evans J. A., Helbing D., Milojević S., Petersen A. M., Radicchi F., Sinatra R., & Uzzi B. (2018). Science of science. Science, 359(6379), eaao0185.
Fullerton, A. S. (2009). A conceptual framework for ordered logistic regression models.Sociological Methods & Research, 38(2), 306-347.
Gates, A. J., & Barabási, A.-L. (2023). Reproducible Science of Science at scale: pySciSci.Quantitative Science Studies, 1-17.
Geuna, A. (2015). Global mobility of research scientists: The economics of who goes where and why. Academic Press.
Gomez C. J., Herman A. C., & Parigi P. (2020). Moving more, but closer: Mapping the growing regionalization of global scientific mobility using ORCID.Journal of Informetrics, 14(3), 101044.
Guan, J., & Chen, Z. (2012). Patent collaboration and international knowledge flow.Information Processing & Management, 48(1), 170-181.
Haunschild, R., & Bornmann, L. (2023). Identification of potential young talented individuals in the natural and life sciences: a bibliometric approach.Journal of Informetrics, 17(3), 101394.
Hill, J., & Reiter, J. P. (2006). Interval estimation for treatment effects using propensity score matching.Statistics in medicine, 25(13), 2230-2256.
Hu B., Liu Y., Zhang X., & Dong X. (2020). Understanding regional talent attraction and its influencing factors in China: From the perspective of spatiotemporal pattern evolution.Plos One, 15(6), e0234856.
Huang Y., Tian C., & Ma Y. (2023). Practical operation and theoretical basis of difference-in-difference regression in science of science: The comparative trial on the scientific performance of Nobel laureates versus their coauthors.Journal of Data and Information Science, 8(1), 29-46.
Issa, H., & Kogan, A. (2014). A predictive ordered logistic regression model as a tool for quality review of control risk assessments.Journal of Information Systems, 28(2), 209-229.
Jałowiecki, B., & Gorzelak, G. J. (2004). Brain drain, brain gain, and mobility: Theories and prospective methods.Higher Education in Europe, 29(3), 299-308.
Jin C., Ma Y., & Uzzi B. (2021). Scientific prizes and the extraordinary growth of scientific topics.Nature communications, 12(1), 1-11.
Jonkers, K., & Tijssen, R. (2008). Chinese researchers returning home: Impacts of international mobility on research collaboration and scientific productivity.Scientometrics, 77, 309-333.
Kalsø Hansen, H. (2007). Technology, Talent and Tolerance - The Geography of the Creative Class in Sweden. (RAPPORTER OCH NOTISER; Vol. 169). Department of Social and Economic Geography, Lund University.
Kato, M., & Ando, A. (2017). National ties of international scientific collaboration and researcher mobility found in Nature and Science.Scientometrics, 110, 673-694.
Kwok L., Adams C. R., & Price M. A. (2011). Factors influencing hospitality recruiters’ hiring decisions in college recruiting.Journal of Human Resources in Hospitality & Tourism, 10(4), 372-399.
Lee, J. T. (2014). Education hubs and talent development: Policymaking and implementation challenges.Higher Education, 68(6), 807-823.
Leuven, E., & Sianesi, B. (2003). PSMATCH2: Stata module to perform full Mahalanobis and propensity score matching, common support graphing, and covariate imbalance testing [Computer software]. Boston College Department of Economics. https://ideas.repec.org/c/boc/bocode/s432001.htm.
Li, F., & Tang, L. (2019). When international mobility meets local connections: Evidence from China.Science and Public Policy, 46(4), 518-529.
Li, Z. (2021). ORCID-based study of researcher mobility trends in China [基于ORCID的中国科研人员流动趋势研究](Master’s thesis, Nanjing Agricultural University). Nanjing Agricultural University. https://doi.org/10.27244/d.cnki.gnjnu.2021.00083.
Liu J., Wang R., & Xu S. (2021). What academic mobility configurations contribute to high performance: an fsQCA analysis of CSC-funded visiting scholars.Scientometrics, 126, 1079-1100.
Liu, M., & Hu, X. (2021). Will collaborators make scientists move? A Generalized Propensity Score analysis.Journal of Informetrics, 15(1), 101113.
Liu, M., & Hu, X. (2022). Movers’ advantages: The effect of mobility on scientists’ productivity and collaboration.Journal of Informetrics, 16(3), 101311.
Liu Q., Turner D., & Jing X. (2019). The “double first-class initiative” in China: Background, implementation, and potential problems.Beijing International Review of Education, 1(1), 92-108.
Luo Z., Gardiner J. C., & Bradley C. J. (2010). Applying propensity score methods in medical research: pitfalls and prospects.Medical Care Research and Review, 67(5), 528-554.
Mellander, C., & Florida, R. (2011). Creativity, talent, and regional wages in Sweden.The Annals of Regional Science, 46, 637-660.
Millard, D. (2005). The impact of clustering on scientific mobility: A case study of the UK.Innovation, 18(3), 343-359.
Moed, H. F., & Halevi, G. (2014). A bibliometric approach to tracking international scientific migration.Scientometrics, 101, 1987-2001.
Nishikawa-Pacher A., Heck T., & Schoch K. (2022). Open editors: a dataset of scholarly journals’ editorial board positions. Research Evaluation, 32(2), 228-243. https://doi.org/10.1093/reseval/rvac03.
Pao, M. L. (1992). Global and local collaborators: a study of scientific collaboration.Information Processing & Management, 28(1), 99-109.
Pellens, M. (2012). The motivations of scientists as drivers of international mobility decisions (FBE Research Report MSI_1202). KU Leuven - Faculty of Business and Economics.
Peters M. A.,& Besley, T.(2018). China’s double first-class university strategy: 双一流2018.143882.
Petersen, A. M. (2018). Multiscale impact of researcher mobility.Journal of The Royal Society Interface, 15(146), 20180580.
Priem J., Piwowar H., & Orr R. (2022). OpenAlex: A fully-open index of scholarly works, authors, venues, institutions, and concepts. arXiv. https://arxiv.org/abs/2205.0183.
Qian, H. (2010). Talent, creativity and regional economic performance: The case of China.The Annals of Regional Science, 45, 133-156.
Ren W., Xue B., Yang J., & Lu C. (2020). Effects of the Northeast China revitalization strategy on regional economic growth and social development.Chinese Geographical Science, 30, 791-809.
Robertson, S. L. (2006). Brain drain, brain gain and brain circulation. Globalisation, Societies and Education, 4(1), 1-5. https://doi.org/10.1080/1476772060055490.
Rosenbaum, P. R., & Rubin, D. B. (1983). The central role of the propensity score in observational studies for causal effects.Biometrika, 70(1), 41-55.
Saxenian, A. (2005). From brain drain to brain circulation: Transnational communities and regional upgrading in India and China.Studies in Comparative International Development, 40, 35-61.
Séguin B., Singer P. A., & Daar A. S. (2006). Scientific diasporas.Science, 312(5780), 1602-1603.
Shi D., Liu W., & Wang Y. (2023). Has China’s Young Thousand Talents program been successful in recruiting and nurturing top-caliber scientists? Science, 379(6627), 62-65.
Solimano, A. (2006). The international mobility of talent and its impact on global development (Discussion Paper No. 2006/08). UNU World Institute for Development Economics Researc.
Tarique, I., & Schuler, R. S. (2010). Global talent management: Literature review, integrative framework, and suggestions for further research.Journal of World Business, 45(2), 122-133.
Tejada Guerrero, G. (2012). Mobility, Knowledge and Cooperation: Scientific Diasporas as Agents of Change.Migration and Development, 10(18), 59-92.
Thorn K.,& Holm-Nielsen, L. B. (2008). International mobility of researchers and scientists: Policy options for turning a drain into a gain In A Solimano (Ed) The international mobility of talent: Types, causes, and development impact (pp145-167) Oxford University Press Policy options for turning a drain into a gain. In A. Solimano (Ed.). The international mobility of talent: Types, causes, and development impact (pp.145-167). Oxford University Press.
Trippl, M. (2013). Scientific mobility and knowledge transfer at the interregional and intraregional level.Regional studies, 47(10), 1653-1667.
Tymon Jr W. G., Stumpf S. A., & Doh J. P. (2010). Exploring talent management in India: The neglected role of intrinsic rewards.Journal of world business, 45(2), 109-121.
Venturini S., Sikdar S., Rinaldi F., Tudisco F., & Fortunato S. (2023). Collaboration and topic switches in science. arXiv. https://doi.org/10.48550/arXiv.2304.0682.
Verginer, L., & Riccaboni, M. (2021). Talent goes to global cities: The world network of scientists’ mobility.Research policy, 50(1), 104127.
Waltman, L., & van Eck, N. J. (2012). The inconsistency of the h-index.Journal of the American society for information science and technology, 63(2), 406-415.
Wang K., Shen Z., Huang C., Wu C.-H., Eide D., Dong Y., Qian J., Kanakia A., Chen A.,& Rogahn, R.(2019). A review of microsoft academic services for science of science studies. Frontiers in Big Data, 2, 45. https://doi.org/10.3389/fdata.2019.0004.
Wang Q., Tang L., & Li H. (2015). Return migration of the highly skilled in higher education institutions: A Chinese university case.Population, Space and Place, 21(8), 771-787.
Wang Y., Luo H.,& Yang, G.(2022). An analysis of the inter-provincial mobility network of scientific researchers in China and its evolution. Science Research Management, 43(3), 79-88. https://doi.org/10.19571/j.cnki.1000-2995.2022.03.01.
Wei, F., & Zhang, G. (2020). Measuring the scientific publications of double first‐class universities from mainland China.Learned publishing, 33(3), 230-244.
Wong, K.-y., & Yip, C. K. (1999). Education, economic growth, and brain drain. Journal of Economic Dynamics and Control, 23(5-6), 699-726. https://doi.org/10.1016/S0165-1889(98)00040-.
Yin, X., & Zong, X. (2022). International student mobility spurs scientific research on foreign countries: Evidence from international students studying in China.Journal of Informetrics, 16(1), 101227.
Yuret, T. (2017). An analysis of the foreign-educated elite academics in the United States.Journal of Informetrics, 11(2), 358-370.
Zeng A., Shen Z., Zhou J., Wu J., Fan Y., Wang Y.,& Stanley, H. E.(2017). The science of science: From the perspective of complex systems. Physics Reports, 714-715, 1-73. https://doi.org/10.1016/j.physrep.2017.10.00.
Zhang F., Liu H., Zhang J., & Cheng Y. (2022). The evolution of China’s high-level talent mobility network: A comparative analysis based on school and work stage. Complexity, 2022, 7353462. https://doi.org/10.1155/2022/735346.
Zhao Z., Bu Y., Kang L., Min C., Bian Y., Tang L., & Li J. (2020). An investigation of the relationship between scientists’ mobility to/from China and their research performance.Journal of Informetrics, 14(2), 101037.
Zhao Z., Li J., Min C., Bu Y., Kang L., & Bian Y. (2019). Scientists’ academic disruptiveness significantly increased after they moved to China.Proceedings of the Association for Information Science and Technology, 56(1), 852-854.
Zhou J., Zeng A., Fan Y., & Di Z. (2018). Identifying important scholars via directed scientific collaboration networks.Scientometrics, 114(3), 1327-1343.
Zhu W., Jin C., Ma Y., & Xu C. (2023). Earlier recognition of scientific excellence enhances future achievements and promotes persistence.Journal of Informetrics, 17(2), 101408.
Zweig D., Fung C. S., & Han D. (2008). Redefining the brain drain: China’s ‘diaspora option’.Science, Technology and Society, 13(1), 1-33.
Zweig D., Siqin K.,& Huiyao, W.(2020). ‘The best are yet to come:’State programs, domestic resistance and reverse migration of high-level talent to China. Journal of Contemporary China, 29(125), 776-791. https://doi.org/10.1080/10670564.2019.1705003